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Secondary structures in long compact polymers
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Compact polymers are self-avoiding random walks that visit every site on a lattice. This polymer model is
used widely for studying statistical problems inspired by protein folding. One difficulty with using compact
polymers to perform numerical calculations is generating a sufficiently large number of randomly sampled
configurations. We present a Monte Carlo algorithm that uniformly samples compact polymer configurations in
an efficient manner, allowing investigations of chains much longer than previously studied. Chain configura-
tions generated by the algorithm are used to compute statistics of secondary structures in compact polymers.
We determine the fraction of monomers participating in secondary structures, and show that it is self-averaging
in the long-chain limit and strictly less than 1. Comparison with results for lattice models of open polymer
chains shows that compact chains are significantly more likely to form secondary structure.
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I. INTRODUCTION

Proteins are long, flexible chains of amino acids which
can assume, in the presence of a denaturant, an astronomi-
cally large number of open conformations. Twenty different
types of amino acids are found in naturally occurring pro-
teins, and their sequence along the chain defines the primary
structure of the protein. The native, folded state of the pro-
tein contains secondary structures such as « helices and 8
sheets, which are in turn arranged to form the larger tertiary
structures. Under proper solvent conditions most proteins
will fold into a unique native conformation which is deter-
mined by its sequence. One of the goals of protein folding
research is to determine exactly how the folded state results
from the specific sequence of amino acids in the primary
structure.

A number of theories exist to describe the forces that are
responsible for protein folding [1]. Since there are many
fewer compact polymer conformations than noncompact
ones, entropic forces resist the tight packing of globular pro-
teins. Tight packing is primarily the result of hydrophobic
interactions between the amino acid monomers and the sol-
vent molecules around them. Compared to the local forces
between neighboring monomers along the chain, the hydro-
phobic interactions were historically seen as nonlocal forces
contributing to the collapse process, but not responsible for
determining the specific form of the native structure [2].

This view has been challenged by ideas from polymer
physics [3,4]. In particular, polymers with hydrophobic
monomers when placed in a polar solvent like water will
collapse to a configuration where the hydrophobic residues
are protected from the solvent in the core of the collapsed
structure. Similarly, protein folding can be viewed as poly-
mer collapse driven by hydrophobicity. The question then
arises, how much of the observed secondary structure is a
result of this nonspecific collapse process?

To examine the role of hydrophobic interactions in fold-
ing, coarse-grained models of proteins have been developed,
which reduce the 20 possible amino acid monomers to two

1539-3755/2006/74(5)/051801(9)

051801-1

PACS number(s): 82.35.Lr, 87.15.—v, 61.41.+¢

types: hydrophobic (H) and polar (P). Further simplification
is effected by using random walks on two- or three-
dimensional lattices to represent chain conformations. Verti-
ces of the lattice visited by the walk are identified with
monomers, which in the HP model are of the H or P variety.
A number of “smart” search algorithms have been devised to
locate ground state structures of HP model sequences [5,6].
In order to capture the compact nature of the folded protein
state, Hamiltonian walks are often used for chain conforma-
tions. The Hamiltonian walk (or “compact polymer”) is a
self-avoiding walk on a lattice that visits all the lattice sites.
The compact polymer model was first used by Flory [7] in
studies of polymer melting, and was later introduced by Dill
[3] in the context of protein folding. The HP model provides
a simple model within which a variety of questions regarding
the relation of the space of sequences (ordered lists of H and
P monomers) to the space of protein conformations (Hamil-
tonian walks) can be addressed; for a recent example see
Ref. [8].

One of the first questions to be examined within the com-
pact polymer model was to what extent is the observed sec-
ondary structure of globular proteins (i.e., the appearance of
well ordered helices and sheets) simply the result of the com-
pact nature of their native states. Complete enumerations of
compact polymers with lengths up to 36 monomers found a
large average fraction of monomers participating in second-
ary structure [9]. This added weight to the argument that the
observed secondary structure in proteins is simply a result of
hydrophobic collapse to the compact state. This simple view
was later challenged by off-lattice simulations, which
showed that specific local interactions among monomers are
necessary in order to produce proteinlike helices and sheets
[10]. However, further off-lattice numerical investigations of
“thick” or tubelike polymers seem to indicate that nonlocal
constraints such as global optimal packing are also important
[11,12].

Here we reexamine the question of secondary structure in
compact polymers on the square lattice using Monte Carlo
sampling of the configuration space. We compute the prob-
ability of a monomer participating in secondary structure in
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the limit of very long chains. We show that this probability is
strictly less than 1, and that it depends on the precise defini-
tion of secondary structure in the lattice model. We also
show that, in the long-chain limit, compact polymers are
much more likely to exhibit secondary structure motifs than
their noncompact counterparts, such as ideal chains, de-
scribed by random walks, or polymers in a good solvent,
modeled by self-avoiding random walks. The Monte Carlo
technique described below can be easily extended to three-
dimensional lattices and other models (such as the HP
model) that make use of Hamiltonian walks.

Hamiltonian walks on different lattices are also interesting
statistical mechanics models in their own right, as their scal-
ing properties give rise to new universality classes of poly-
mers. An unusual property of these walks is that different
lattices do not necessarily lead to the same universality class.
This lattice dependence is linked to geometric frustration that
results from the constraint that Hamiltonian walks must visit
all the sites of the lattice. In addition, compact polymers can
be obtained as the zero-fugacity limit of fully packed loop
models (the exact form of which depends on the lattice) al-
lowing for the exact calculation of critical exponents [13].

Numerical investigations of compact polymers are typi-
cally hampered by the need to generate a sufficient number
of statistically independent compact configurations for the
construction of a suitable ensemble. It is not hard to see that
attempting to generate compact structures by constructing
self-avoiding random walks on a lattice would indeed be a
problematic endeavor; current state-of-the-art algorithms are
essentially “smarter” chain growth strategies where the next
step in the random walk is taken based not only on the self-
avoidance constraint but on a sampling probability that im-
proves as the program proceeds [14]. Enumerations of all
possible states have been performed for both regular self-
avoiding random walks [15] and compact polymers [16], but
this has only been possible for small lattices (N <<36). There-
fore, an algorithm that can rapidly generate compact configu-
rations on significantly larger lattices, without the complica-
tion of constructing advanced sampling probabilities, would
be an extremely useful tool.

In Ref. [17] a method for generating compact polymers
based on the transfer matrix method was introduced. One
limitation of the method is that the transfer matrices become
prohibitively large as the number of sites in the direction
perpendicular to the transfer direction increases above 10. A
very efficient Monte Carlo method based on a graph theoret-
ical approach was introduced in [18] and improved on in
[19] by reducing the sampling bias.

One of the purposes of this paper is to describe a Monte
Carlo method for efficiently generating compact polymer
configurations on the square lattice for chain lengths up to
N=2500. The Monte Carlo algorithm outlined below makes
use of the “backbite” move, which was first introduced by
Mansfield in studies of polymer melts [20]. We perform a
number of measurements to assess the validity and practical-
ity of the algorithm for generating compact polymer configu-
rations. Probably the most important and certainly the most
elusive property is that of ergodicity, which would guarantee
that the algorithm can sample all compact polymer configu-
rations. While we have been unsuccessful in constructing a
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proof of ergodicity, we find excellent numerical evidence for
it based on a number of different tests. In particular, we
check that the measured probability that the polymer end
points are adjacent on the lattice is in agreement with exact
enumeration results for polymer chain lengths up to N=196.
Furthermore, we demonstrate that the Monte Carlo process
satisfies detailed balance, which guarantees, at least in the
theoretical limit of infinitely long runs, that the sampling is
unbiased. We check this in practice with a quantitative test of
sampling bias for N=36 (i.e., for compact polymers on a 6
X 6 square lattice).

For the Monte Carlo process to be useful it should also
sample the space of compact polymer configurations effi-
ciently. To quantify this property of the algorithm, we mea-
sure the processing time required to generate a fixed number
of compact polymer conformations, and find it to be linear in
chain length N. Since the sampling is of the Monte Carlo
variety a certain number of Monte Carlo steps need to be
performed before the initial and the final structure can be
deemed statistically independent. We find that this correla-
tion time, measured in Monte Carlo steps per monomer,
grows with chain length as N* with z=0.16.

We put the Monte Carlo algorithm to good use by tackling
the question of the statistics of secondary structure in com-
pact polymer chains. While the previous study by Chan and
Dill [9] found a large fraction of monomers participating in
secondary-structure motifs, the polymer physics question of
what happens to this quantity in the long-chain limit, re-
mained unanswered. Based on exact enumerations for chain
lengths up to N=36 the hypothesis that was put forward was
that in the long-chain limit almost all the monomers will
participate in secondary structure. Our computations, on the
other hand, show that the probability of a monomer partici-
pating in secondary structure tends to a fixed number strictly
less than 1. Furthermore, the actual number depends on the
precise definitions used for secondary structure motifs. Still,
from gathered statistics on the appearance of helixlike motifs
in simple random walks and self-avoiding walks, we con-
clude that the propensity for secondary structures in compact
polymers is much greater than in their noncompact counter-
parts, even in the long-chain limit. This provides further sup-
port for the idea that the global constraint of compactness,
imposed on globular proteins by hydrophobicity, favors for-
mation of secondary structure.

II. MONTE CARLO SAMPLING OF COMPACT
POLYMERS

The Monte Carlo process starts with an initial Hamil-
tonian walk on the lattice. We use a square lattice with side
VN, N being the polymer length. The initial walk is the
“plough” shown in Fig. 1. Starting from this initial compact
polymer configuration, new configurations are generated by
repeatedly applying the backbite move [20]; namely, given a
Hamiltonian walk [Fig. 2(a)], a link is added between one of
the walk’s free ends and one of the lattice sites adjacent, but
not connected, to that end. This adjacent site is chosen at
random with each possible site having an equal probability
of being chosen [Fig. 2(b)]. After the new link has been
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FIG. 1. Compact polymer configuration on a 6 X 6 lattice. This
“plough” configuration is used as the initial state for the Monte
Carlo process.

added we no longer have a valid Hamiltonian walk, since
three links are now incident to the chosen site. To correct this
we remove one of the three links, which is uniquely charac-
terized by being part of a cycle (closed path) and not being
the link just added [Fig. 2(c)]. After one iteration of this
process one of the ends of the walk has moved two lattice
spacings, and a new Hamiltonian walk has been constructed
[Fig. 2(d)].

By repeatedly executing the backbite move it seems that
all possible Hamiltonian walks are generated. To examine
this statement more closely, we first consider compact poly-
mers on a 3 X 3 lattice. Figure 3 shows an enumeration of all
possible compact polymer configurations on this lattice. The
corresponding walks may be divided into three classes where
all the walks in a given class (Plough, Spiral, or
Locomotive—denoted P, S, and L in the figure) are related
by reflection (denoted R in the figure) and/or rotation. (Note
that P-class walks are invariant under rotation by 180°, and
that there are half as many P-class walks as S- or L-class
walks.) Figure 4 shows the transition graph that connects
compact polymer configurations on a 3 X3 lattice that are

(c) (d)

FIG. 2. Illustration of the “backbite” move used to generate a
new Hamiltonian walk from an initial one. Starting from a valid
walk (a), one additional step is made starting at either of the two
ends of the walk (b). Next we delete a step, shown in (c), to produce
a new valid walk (d).
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FIG. 3. Enumeration of all possible Hamiltonian walks on a 3
X3 square lattice.

related by a single backbite move. We see that all the 20
possible walks can be reached from any initial walk. Further-
more, it is important to notice that the S-class walks have
four moves leading in and out of them, while the L- and
P-class walks only have two moves leading in and out of
them. This happens as a result of the locations of a walk’s
end points; namely, on a square lattice an end point on a
corner can only be linked to one adjacent site by the backbite
move, end points on the edges can be linked to two sites,
while end points in the interior of the lattice can be linked to
three sites. Because there are twice as many moves leading
to S-class walks as there are for P-class or L-class, the
S-class walks are twice as likely to be generated if backbite
moves are repeatedly performed (this subtlety is absent if
periodic boundary conditions are employed).

In order to compensate for this source of bias in sampling
of compact polymers, an adjustment to the original process is
made: for structures that have fewer paths available to access
them, we introduce the option of leaving the current walk
unchanged in the next Monte Carlo step. The probability of
making a transformation from the current walk is calculated
by counting how many links / can be drawn from the end
points of the current walk and dividing that number by the
maximum number (I,,,,,) of links that could be drawn for any

S1 L1 S2

N

L4 Pl L3

N

3> > 54

\

FIG. 4. Transition graph for compact polymers on the 3 X3
square lattice generated by the backbite move.

P2
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walk on the lattice. For example, consider a P-class walk on
a 3 X3 lattice. There are two possible links that could be
drawn from the end points of this walk, but there is a maxi-
mum of four links that could be drawn (which happens in the
case of S-class walks). Thus the probability of making a
backbite move is I/1,,,=2/4=0.5.

With this adjustment of the original Monte Carlo process,
all walks accessible from the initial walk will occur with
equal probability, upon repeating the algorithm a sufficiently
large number of times. Technically speaking, the amended
algorithm satisfies detailed balance. In general, the criterion
for detailed balance reads p,Pla— a')=p,Pla’— a),
where p,, is the probability of the system being in the state «,
and P(a— a') is the transition probability of going from the
state « to another state «’. In thermal equilibrium one must
have p,=Z"" exp(-BE,), where S is the inverse temperature,
E, is the energy of the state @, and Z=32 exp(-BE,) is the
partition function. In the problem at hand we have assigned
the same energy (say, E,=0) to all states, whence the
criterion for detailed balance reads simply P(a—a')
=P(a’ — a).

Now suppose that the state « can make transitions to /,,
other states. (In the above example, [,=2 for the P-class
walks and [,=4 for the S-class walks.) Then we can choose
P(a—a') equal to m(a@— «’)=min(1/1,,1/1,) for a# a'.
Define y(a):E;,ﬂ-(a—> a'), where the sum is over the [,
states «’, which can be reached by a single move from the
state a. In order to make sure that probabilities sum up to 1,
we must introduce the probability P(a— a)=1- y(«) for do-
ing nothing. Better yet, we can eliminate the possibility of
doing nothing by renormalizing the Monte Carlo time;
namely, let the transition out of the state a correspond to a
Monte Carlo time 1/7(«) and pick the transition probabili-
ties as P(a— a’)=m(a— a’)/ y(«). Then the transition rates
(i.e., the transition probabilities per unit time) satisfy detailed
balance as they should. This renormalized dynamics is
clearly optimal in the sense that now the probability of leav-
ing the state unchanged is zero, P(a«— a)=0. In practice, the
optimal choice only presents an advantage if the numbers /,,
are easy to evaluate (which is the case here) and if their
values vary considerably with « (which is not the case here).
Accordingly, we have used only the simpler //[,, prescrip-
tion described in the preceding paragraph.

Even though we have satisfied detailed balance, a walk
generated by the Monte Carlo process does not immediately
start occurring with a probability that is independent of the
initial walk. For large N in particular, a walk generated by
the process will show a great deal of structural similarity to
the walk that it was created from because only two links of
the walk get changed in each iteration of the process. To
work around this problem a large number of walks must be
generated to yield the final ensemble. Below we address this
important practical issue in great detail.

A. Properties of the Monte Carlo process

In evaluating the suitability of the Monte Carlo algorithm
for statistical studies of compact polymers the following is-
sues must be addressed. (1) Does the process generate all
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possible Hamiltonian walks on a given lattice? (2) Is the
sampling as described in the previous section truly unbiased?
(3) How rapidly do descendant structures lose memory of the
initial structure? (4) How does the processing time to gener-
ate a fixed number of walks scale with the number of lattice
sites? The first two questions relate to issues of ergodicity
and detailed balance which both need to be satisfied so that
structures are sampled correctly. The last two questions per-
tain to the efficacy with which the algorithm can generate
uncorrelated structures that can be used in computations of
ensemble averages. Below we give detailed answers to these
questions.

We have been unable to provide a general proof of ergod-
icity, i.e., that the Monte Carlo process can generate all pos-
sible Hamiltonian walks on square lattices of arbitrary size.
However, we have observed that the process successfully
generates all of the possible walks on square lattices of size
3X3,4X4,5X5, and 6 X6. It should be noted that for 5
X5 and 6 X6 lattices, all possible “combinations” of end
point locations are possible, while on smaller lattices only
walks with corner-corner, core-corner, and corner-edge com-
binations are allowed. Whether end points are on edges, cor-
ners, or in the bulk of the lattice is important because it
determines how many links might be drawn from an end
point that in turn determines the probability of making a
Monte Carlo step away from the current structure. Both 5
X5 and 6 X 6 lattices have [, =6, which is the largest pos-
sible /., on the square lattice. In this sense, we consider
these two lattices representative of larger lattices.

It should also be noted that the algorithm is likely to ex-
hibit parity effects. This is linked to the fact that a square
lattice can be divided into two sublattices (even and odd);
namely, on a lattice of N sites, the two end points must
necessarily reside on opposite (equal) sublattices if N is even
(odd). To see this, note that when moving along the walk
from one end point to the other, the site parity must change
exactly N—1 times. In particular, only when N is even can
the two end points be adjacent on the lattice. It is therefore
reassuring to have tested ergodicity for both 5X35 and 6
X 6 lattices.

To test whether or not the process generates unbiased
samples, K=107 compact polymer conformations were gen-
erated on a 6 X6 lattice. All different conformations were
identified and the number of occurrences of each identified
conformation was counted. The number of conformations on
a 6 X6 lattice is known by exact enumeration to be M
=229 348 [21], and our algorithm indeed generates all of
these. Using a method similar to the one used in Ref. [19] we
construct the histogram of the frequency with which each
one of the M possible conformations occurs. This histogram
is then compared to the relevant binomial distribution;
namely, if each conformation occurs with equal probability
p=1/N then the probability of a given conformation occur-
ring k times in K trials is P(k)=[K!/k!(K—k)!]p*(1-p)K*.
In Fig. 5 we compare P(k) to the distribution constructed
from the actual 6 X6 sample. A close correspondence be-
tween the predicted distribution and the distribution con-
structed from the Monte Carlo data is evident from the fig-
ure, indicating no detectable sampling bias in this case.

Further evidence that the sampling is unbiased is provided
by computing the probability P; that the end points of the
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FIG. 5. Comparison of sampling statistics of compact polymers
on the 6 X 6 lattice produced by the Monte Carlo process with the
binomial distribution, which is to be expected for an unbiased
sampling.

generated walks are separated by one lattice spacing. Note
that when this is the case, the walk could be turned into a
closed walk, or Hamiltonian circuit, by adding a link that
joins the two end points. Conversely, a closed walk on an
N-site lattice can be turned into N distinct open walks by
removing any one of its N links. Therefore P\=NM,/M,,
where M, (M) is the number of closed (open) walks that
one can draw on the lattice. Using this formula, we can com-
pare P, as obtained by the Monte Carlo method, to P; from
exact enumeration data. The exact enumerations are done
using a transfer matrix method for lattice sizes, up to 14
X 14 [21]. The results displayed in Table I show that the two
determinations of P; are in excellent agreement.

To quantify the rate at which descendant structures be-
come decorrelated from an initial structure we must first de-

TABLE 1. The probability P; that the walk’s two end points are
adjacent on an L X L lattice, as obtained by exact enumeration (see
text) and by the Monte Carlo method.

L MO/MI Prl:num Pl]VIC

2 1 1.00000000 1.0000
4

4 6 034782609 0.3455
276

6 1072 0.16826831 0.1664
229348

8 4638576 0.09819322  0.0979
3023313284

10 467260456608 0.06400435 0.0633
730044829512632

12 1076226888605605706 0.04488610  0.0442
3452664855804347354220

14 56126499620491437281263608 0.03315399  0.0323

331809088406733654427925292528
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FIG. 6. Possible path shapes through the vertex of a square
lattice.

= kE

vise a method for computing the similarity of two structures.
The method used here is to compare, vertex by vertex, the
different ways in which the walk can pass through a vertex.
Looking at the examples of walks in Fig. 3 we immediately
see that there are seven possibilities, shown in Fig. 6. The
walk may move vertically or horizontally straight through a
vertex, form a corner in four different ways, or terminate at a
vertex. To evaluate the autocorrelation time, a walk is repre-
sented by N variables 0;=1,2,...,7 that encode the possible
shapes at each lattice site i. The similarity S(o,¢’) of two
walks {0} and {”} is then defined as S(o-,a’):N‘lEié(,i,Ug.
As the Monte Carlo process progresses from an initial
Hamiltonian walk we expect that the similarity between the
initial and the descendent walks to decay with Monte Carlo
time. In order to estimate the characteristic time scale 7 for
this decay, we plot in Fig. 7 the autocorrelation function

_(8(a(0),(1)) = (S)min
- 1= () min

where the average is taken over many runs and (S),, is the
smallest average similarity computed for the duration of the
Monte Carlo process, for a given N. The walk o(r) is one
obtained after + Monte Carlo steps per lattice site applied to
the initial walk ¢/(0).

The curves in Fig. 7 have an initial, exponentially decay-
ing regime. In this regime we fitted them to the function
A exp(~t/7) to obtain an estimate for the autocorrelation

A(7) (1)

TR B RS R AT B S AR

100 _ 1000 10000 |

Autocorrelation Function

N
“, |
| |— N=36 N |
| N=400 m
— N=1600 on,
. I . AT
0.0, 10 20

Iterations per lattice site

FIG. 7. Autocorrelation curves for various polymer lengths N.
The inset shows the dependence of a characteristic time scale con-
stant 7, extracted from the autocorrelation curves, on polymer
length N.
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time 7. The inset of Fig. 7 shows the dependence of 7 on
polymer length N, plotted on a log-log scale. Fitting now the
polymer length dependence using 7=BN?, we get the esti-
mate z=0.16+0.03 for the dynamical exponent. The fact that
the dynamical exponent is small tells us that increasing the
polymer length in the simulation will not lead to a large
increase in computational cost.

There are two ways in which polymer length plays a role
in the performance of the algorithm described above. First,
measurements show that the processor time needed to gen-
erate a fixed number of walks scales linearly with their
length. However, this particular result only considers the
time to generate a fixed number of consecutive structures in
the Monte Carlo process, which, as we have seen, are not
statistically independent. The actual processing time to gen-
erate an ensemble of properly sampled structures would in-
crease the reported times by a factor equal to the number of
iterations needed to achieve statistical independence of
samples. This factor roughly equals the autocorrelation time
7, which depends on N through the exponent z determined
above. In practice, using a pentium-based workstation, it
takes roughly an hour to sample 10 000 statistically indepen-
dent compact polymer configurations for a chain 2500 mono-
mers in length.

III. SECONDARY STRUCTURES IN COMPACT
POLYMERS

The presence of secondary-structure-like motifs in com-
pact polymers on the square lattice has been extensively
studied for chain lengths up to N=36 [9]. It was shown in
Ref. [9] that it is very unlikely to find a compact chain with
less than 50% of its residues participating in secondary struc-
tures and that the fraction of residues in secondary structures
increases as the chain length increases. Based on studies of
chains up to N=36 it appeared that the fraction of participat-
ing residues would asymptotically approach 100% as N in-
creased. Using the Monte Carlo approach described above
we have extended these calculations to N=2500 and find that
the fraction of residues participating in secondary structures,
in the long-chain limit, tends to a number strictly less than 1.
We also show that this number is definition dependent but is
still substantially greater for compact polymers than for non-
compact chains.

A. Identification of secondary structures

There is more than one way to identify secondary struc-
tures in lattice models of proteins. Following Ref. [9] we
make use of contact maps which provide a convenient and
general way of representing secondary structure motifs. A
contact map is a matrix of ones and zeroes, where the ones
represent those pairs of residues which are adjacent on the
lattice, but not connected along the chain. In this representa-
tion secondary structures are identified by searching for pat-
terns in the contact map which represent helices, sheets, and
turns; an example is shown in Fig. 8.

In order to test the generality of our findings, data were
collected using three different sets of definitions for second-
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FIG. 8. (Color online) Contact map for a Hamiltonian walk on a
4 X 4 square lattice. A filled circle in position (i,j) indicates that
residues 7 and j are in “contact”; they are adjacent on the lattice but
are not nearest neighbors along the chain. Secondary structure mo-
tifs defined in Fig. 9 appear as distinct patterns in the contact map.

ary structure which are illustrated in Fig. 9. Since there is no
unique definition of secondary structure for lattice models of
proteins, these models can at best provide qualitative an-
swers to questions relating to real proteins, like the role of
hydrophobic collapse in secondary structure formation. In
other words, any conclusions derived from the lattice model
tthatt might hope to apply to real proteins should certainly
not depend on the particular definition employed.

The first definition summarized in Fig. 9 is the least re-
strictive one. Because sheets only require two pairs of adja-
cent residues, this definition allows for pairs of residues to
participate in both helices and sheets. Unfortunately, this
property does not have any counterpart in real proteins. For
this reason, and following Ref. [9], we also implement a
second definition for both parallel and antiparallel sheets that

1 s 2 [ns m ni2 3 s m 2
ne2 | m et 2 ne|[ mer net ne2 e[| mea el
0 |[me n n || me2 n n (| me2 n

Helix Anti-Parallel S heet Helix Anti-Parallel S heet Helix Anti-Parallel S heet|

n+s n m2 ne2(|nss n m2 @ 2| [ne7 n
mi1 41| nea 41 ma1 n41| nsa 1 m1 @ 1| nss 41
m n m n m @ |[ns ni2

Parallel  hdet Turn Parallel S hdet Turn Paraliel S heet

FIG. 9. (Color online) Three definitions used to identify second-
ary structures in compact polymers. The shaded vertices (mono-
mers) are counted as participating in the particular secondary struc-
ture motif. Definition 1 is the most liberal while 3 is the most
conservative. Definitions 1 and 2 are identical to those used in Ref.
[9]. The rationale for definition 3 is described in the text.
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FIG. 10. Probability distribution for the fraction of residues participating in secondary structure for varying polymer lengths. The figures
show only the first two definitions of secondary structure represented in Fig. 9. The insets are quantile-quantile plots that show the correlation
between the measured distributions and a normally distributed random variable. Straight lines indicate a strong correlation with the Gaussian
distribution, and the slopes of the lines reflect the distribution variances.

requires them to have three pairs of adjacent monomers in-
stead of just two. This makes it more difficult for a residue to

be part

we use,

of both a sheet and a helix. The third definition that
also shown in Fig. 9, is even more strict than the

second definition: a turn now requires three pairs of residues
to be in contact. This ensures that a turn can only be identi-
fied if it is part of a sheet, which was not necessarily the case
in the second definition.
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FIG. 11. Average fraction of residues participating in secondary
structure as a function of chain length N. The full lines represent a
three-parameter fit to the function f.,—a/N".

B. Statistics of secondary structures

To gather the statistics on secondary structure motifs,
50 000 statistically independent Hamiltonian walks on the
square lattice were generated for chain lengths ranging be-
tween N=36 and 2500. For each walk, the residues partici-
pating in secondary structure were identified and counted
using each of the three sets of definitions. To determine the
fraction of residues participating in secondary structure for a
given walk, the count is then divided by N, the total number
of residues. The histogram of the fraction of sites participat-
ing in secondary structure is subsequently constructed for
each chain length.

Plots of the histograms of the participation fraction are
shown in Figs. 10(a)-10(f) for definitions 1 and 2, respec-
tively. Each plot shows the histogram for a different polymer
length or definition of secondary structure. Both the mean
and the variance of the participation fraction clearly depend
on the definition employed. As the polymer length N in-
creases, the distributions appear to approach a Gaussian
shape for all definitions, and they are more and more sharply
peaked around the mean.

From the measured participation fractions we compute
their mean and variance. The dependence of the mean on the
polymer length is shown in Fig. 11. As polymer length in-
creases the average fraction of residues participating in sec-
ondary structure approaches a fixed number f.., which clearly
depends on the definition used. Although the definition af-
fects the specific value of f., each curve has roughly the
same shape, which is well fited by the function f=f,—a/N".
In all cases the numerical value of f.., the participation frac-
tion in the long-chain limit, is less than 1 (see Table II).

The variance of the fraction of residues participating in
secondary structure is shown in Fig. 12. It clearly decreases
with increasing N in a power-law fashion. A linear fit on the
log-log plot reveals that the variance scales as 1/N, regard-
less of the definition of secondary structure employed. This
result indicates that for compact polymers on the square lat-
tice the fraction of residues participating in secondary struc-
ture has a well-defined long-chain limit given by f...

PHYSICAL REVIEW E 74, 051801 (2006)

TABLE II. The parameters obtained from fitting the average
fraction of residues participating in secondary structures, f, for dif-
ferent chain lengths N to the functional form f=f,.—a/N*.

Definition oo a X
0.9719 4.2511 1.1451
0.6972 11.7942 1.4303
3 0.6108 8.8789 1.3461

In order to assess how closely the histograms in Fig. 10
approach a Gaussian distribution, we construct a quantile-
quantile plot for each histogram as follows: the percent of
residues participating in secondary structure for each struc-
ture measured is placed in an ordered list. Each measurement
of percent of residues participating in secondary structure in
this ordered list is given an index i from 1 to 50 000. We
assume that each measurement in this list has a solm chance
of being measured and some measured values appear mul-
tiple times in the list. Additionally, we assume 3555 tells us
the probability of measuring the value at i or some value less
than it in our list. The inverse of the standard normal cumu-
lative distribution function N(p) takes a probability p and
returns a value v of a standard normal random variable, such
that the probability of observing v or some value less than v
is p. We plot our list of measurements against N(m).
These quantile-quantile plots appear as insets in Fig. 10, and
a straight line indicates a Gaussian distribution with the
y-intercept given by the mean of our data and the slope given
by the variance. Note that deviations from a straight line
appear in the tails of the distributions. We attribute this pri-
marily to the influence of the initial plough configuration on
the sampled walks. This we verified by comparing histo-
grams for the participation fraction constructed from three
different ensembles of compact polymers which differed by
the number of Monte Carlo steps taken before sampling is
initiated. As the initial wait time for the sampling to com-
mence is increased we find that the deviations from the
Gaussian distribution decrease significantly (not shown). In
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FIG. 12. Variance of the participation fraction as a function of
chain length for all three definitions of secondary structure.
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fact, in order to lose memory of the initial plough state, we
found the wait time to be of the order of 107, where 7 is the
measured correlation time.

In order to understand the degree to which global com-
pactness, as opposed to local connectivity, of the chains is
responsible for the formation of helices we investigated the
set of all 2 X3 motifs that can be observed in a compact
polymer configuration. Namely, on a 2 X 3 section of square
lattice there are seven possible bonds that can be drawn,
which means there are 27 different 2 X 3 motifs. Of course,
not all of these are compatible with a compact polymer con-
figuration. For example, motifs with all bonds present or no
bonds present could not be part of a valid Hamiltonian walk.
In fact we found 67 allowed motifs, of which only two are
helices. Therefore, the naive assumption that each of the al-
lowed motifs appears with an equal probability would lead to
the expectation of only 3% of residues participating in helix
motifs. By comparison, simulations of long chains place the
expected value near 28%.

To further assess the importance of being compact for the
emergence of secondary structures, we generated ensembles
of random walks and self-avoiding random walks and com-
pared their helix content to that of Hamiltonian walks. Ran-
dom walks were generated simply from a series of random
steps on the square lattice. Self-avoiding walks were sampled
using a Monte Carlo process based on the pivot algorithm
[22]. As might be expected, based on the results stated
above, the measured helix content is self-averaging (its dis-
tribution becomes narrower with increasing N), for all three
polymer models. We find that there is a clear difference in
the average helical content of random walks and self-
avoiding walks compared to Hamiltonian walks. The three
different polymer models have 8%, 11%, and 28% helical
content, respectively, in the long-chain limit.

IV. CONCLUSION

In this paper we describe and test a Monte Carlo algo-
rithm for sampling compact polymers on the square lattice.
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The algorithm is based on the “backbite” move introduced
by Mansfield [20] for the purpose of simulating a many-
chain polymer melt. We demonstrate that the algorithm sat-
isfies detailed balance, which ensures that all the accessible
states are sampled with the correct weight. While we have
been unable to prove the ergodicity of the algorithm for large
lattice sizes a number of numerical tests seem to indicate its
validity.

We employ this algorithm in studies of secondary struc-
ture of compact polymers on the square lattice, in the long-
chain limit. Our results complement the results found previ-
ously for short chains by Chan and Dill [9]; namely, we show
that the fraction of residues participating in secondary struc-
ture has a well-defined long-chain limit that is strictly less
than 1. Looking at helix content alone, we find that helices
are twice as likely to appear in long compact chains than in
random walks or self-avoiding walks. In the context of real
proteins this result suggests that hydrophobic collapse to a
compact native state might in large part be responsible for
the observed preponderance of secondary structures. How-
ever, further investigation is necessary before these conclu-
sions can be extended to three dimensions.

The Monte Carlo algorithm described here for two-
dimensional compact polymers can be easily extended to
three dimensions, and various kinds of interactions between
the monomers can be introduced. This will amount to assign-
ing different energies to different compact chains for which a
Metropolis-type algorithm with the backbite move can be
employed. How well the algorithm performs in these situa-
tions remains to be seen.
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